Content

Assistive technology | Understanding and definition of Assistive technology

Assistive technology or adaptive technology (AT) is an umbrella term that includes assistive, adaptive, and rehabilitative devices for people with disabilities and also includes the process used in selecting, locating, and using them. AT promotes greater independence by enabling people to perform tasks that they were formerly unable to accomplish, or had great difficulty accomplishing, by providing enhancements to or changed methods of interacting with the technology needed to accomplish such tasks.

Likewise, disability advocates point out that technology is often created without regard to people with disabilities, creating unnecessary barriers to hundreds of millions of people. Even the makers of AT technologies will often still argue that universal design is preferable to the need for AT and that universal design projects and concepts should be continuously expanded.

Universal (or broadened) accessibility, or universal design means greater usability, particularly for people with disabilities.

Universally accessible technology yields great rewards to the typical user as well; good accessible design is universal design. One example is the "curb cuts" (or dropped curbs) in the sidewalk at street crossings. While these curb cuts enable pedestrians with mobility impairments to cross the street, they also aid parents with carriages and strollers, shoppers with carts, and travelers and workers with pull-type bags.

As an example, the modern telephone is inaccessible to people who are deaf or hard of hearing. Combined with a text telephone (also known as a TDD Telecommunications device for the deaf and in the USA generally called a TeleTYpewriter or TTY), which converts typed characters into tones that may be sent over the telephone line, a deaf person is able to communicate immediately at a distance. Together with "relay" services, in which an operator reads what the deaf person types and types what a hearing person says, the deaf person is then given access to everyone's telephone, not just those of people who possess text telephones. Many telephones now have volume controls, which are primarily intended for the benefit of people who are hard of hearing, but can be useful for all users at times and places where there is significant background noise. Some have larger keys well-spaced to facilitate accurate dialing.

Also, a person with a mobility impairment can have difficulty using calculators. Speech recognition software recognizes short commands and makes use of calculators easier.

People with learning disabilities like dyslexia or dysgraphia are using text-to-speech (TTS) software for reading and spelling programs for assistance in writing texts.

Computers, with their hardware extensibility, editing, spellchecking and speech synthesis software are becoming the cornerstone of assistive technologies, improving quality of life for those with learning disabilities and visual impairments. Spell assist programs and voice-recognition facilities are also bringing the text reading and writing experience to the wider public.

Toys that have been adapted to be used by children with disabilities might have advantages for non-disabled children as well. The Lekotek movement assists parents by lending assistive technology toys and expertise to families.

Many health professionals may be certified by RESNA (RESNA.org) to serve assistive technology needs: occupational therapists, physical therapists, speech language pathologists/audiologists, orthotists and prosthetists, educators, and rehabilitation and health professionals.

Personal Emergency Response Systems (PERS), or Telecare (UK term), are a particular sort of assistive technology that use electronic sensors connected to an alarm system to help caregivers manage risk and help vulnerable people stay independent at home longer. An example would be the systems being put in place for senior people such as fall detectors, thermometers (for hypothermia risk), flooding and unlit gas sensors (for people with mild dementia). Notably, these alerts can be customized to the particular person's risks. When the alert is triggered, a message is sent to a caregiver or contact center who can respond appropriately.

Technology similar to PERS can also be used to act within a person's home rather than just to respond to a detected crisis. Using one of the examples above, gas sensors for people with dementia can be used to trigger a device that turns off the gas and tells someone what has happened.

Designing for people with dementia is a good example of how the design of the interface of a piece of AT is critical to its usefulness. People with dementia or any other identified user group must be involved in the design process to make sure that the design is accessible and usable. In the example above, a voice message could be used to remind the person with dementia to turn off the gas himself, but whose voice should be used, and what should the message say? Questions like these must be answered through user consultation, involvement and evaluation.

Claims Since children with autism process visual information easier than auditory information, when utilizing assistive technology claims that any time we use these devices with these children, we're giving them information through their strongest processing area (visual). Therefore various types of technology from "low" tech to "high" tech, should be incorporated into every aspect of daily living in order to improve the functional capabilities of children with autism.

Benefits Regarding comprehension skills, increasing comprehension of tasks/activities/situations is essential in addressing skill areas such as organization, attending, self help, following directions, following rules and modifying behavior. As a result, the child becomes more independent. The following "low" tech visual support strategies can be created and used to benefit and assist the child in increasing his comprehension skills and thus decreasing the occurrence of challenging behaviors.

Consistent daily use of an individualized visual schedule will increase a child's organization skills and independent functioning throughout all aspects of his life and will ease transition through adulthood. There are numerous ways to present visual schedules for example an object schedule, 3-ring binder schedule, clipboard schedule, manila file folder schedules, and dry erase board schedules are all beneficial to increase a child's organization skills and independent functioning.

The use of a weekly/monthly calendar at both home and school can provide the child with important information regarding up-coming events/activities, rather than relying on auditory information. When the child asks when a particular event will occur, he can easily be referred to the visual calendar. Use of a visual calendar can also be helpful in assisting the child to understand when regularly scheduled events may not occur.

Outcomes In a pilot study, Researchers Lacava, Golan, Baron-Cohen, and Myles explored the use of assistive technology to teach emotion recognition to eight children with Autism and the results indicated that after intervention, participants improved on face and voice emotional recognition for basic and complex emotions that were in the software. As well as for complex voice emotional recognition for emotions not included in Mind Reading.

0 comments:

Post a Comment

Blog Archive