Plate tectonics (from the Late Latin tectonicus, from the Greek: τεκτονικός "pertaining to building") is a scientific theory which describes the large scale motions of Earth's lithosphere. The theory builds on the older concepts of continental drift, developed during the first decades of the 20th century (one of the most famous advocates was Alfred Wegener), and was accepted by the majority of the geoscientific community when the concepts of seafloor spreading were developed in the late 1950s and early 1960s. The lithosphere is broken up into what are called "tectonic plates". In the case of the Earth, there are currently seven to eight major (depending on how they are defined) and many minor plates. The lithospheric plates ride on the asthenosphere. These plates move in relation to one another at one of three types of plate boundaries: convergent, or collisional boundaries; divergent boundaries, also called spreading centers; and conservative transform boundaries. Earthquakes, volcanic activity, mountain-building, and oceanic trench formation occur along these plate boundaries. The lateral relative movement of the plates varies, though it is typically 0–100 mm annually.
The tectonic plates are composed of two types of lithosphere: thicker continental and thin oceanic. The upper part is called the crust, again of two types (continental and oceanic). This means that a plate can be of one type, or of both types. One of the main points the theory proposes is that the amount of surface of the (continental and oceanic) plates that disappear in the mantle along the convergent boundaries by subduction is more or less in equilibrium with the new (oceanic) crust that is formed along the divergent margins by seafloor spreading. This is also referred to as the "conveyor belt" principle. In this way, the total surface of the globe remains the same. This is in contrast with earlier theories advocated before the Plate Tectonics "paradigm", as it is sometimes called, became the main scientific model, theories that proposed gradual shrinking (contraction) or gradual expansion of the globe, and that still exist in science as alternative models.
Regarding the driving mechanism of the plates various models co-exist: Tectonic plates are able to move because the Earth's lithosphere has a higher strength and lower density than the underlying asthenosphere. Lateral density variations in the mantle result in convection. Their movement is thought to be driven by a combination of the motion of seafloor away from the spreading ridge (due to variations in topography and density of the crust that result in differences in gravitational forces) and drag, downward suction, at the subduction zones. A different explanation lies in different forces generated by the rotation of the globe and tidal forces of the Sun and the Moon. The relative importance of each of these factors is unclear, and is still subject to debate (see also below).
The outer layers of the Earth are divided into lithosphere and asthenosphere. This is based on differences in mechanical properties and in the method for the transfer of heat. Mechanically, the lithosphere is cooler and more rigid, while the asthenosphere is hotter and flows more easily. In terms of heat transfer, the lithosphere loses heat by conduction whereas the asthenosphere also transfers heat by convection and has a nearly adiabatic temperature gradient. This division should not be confused with the chemical subdivision of these same layers into the mantle (comprising both the asthenosphere and the mantle portion of the lithosphere) and the crust: a given piece of mantle may be part of the lithosphere or the asthenosphere at different times, depending on its temperature and pressure.
The key principle of plate tectonics is that the lithosphere exists as separate and distinct tectonic plates, which ride on the fluid-like (visco-elastic solid) asthenosphere. Plate motions range up to a typical 10–40 mm/a (Mid-Atlantic Ridge; about as fast as fingernails grow), to about 160 mm/a (Nazca Plate; about as fast as hair grows). The driving mechanism behind this movement is described separately below.
Tectonic lithosphere plates consist of lithospheric mantle overlain by either or both of two types of crustal material: oceanic crust (in older texts called sima from silicon and magnesium) and continental crust (sial from silicon and aluminium). Average oceanic lithosphere is typically 100 km thick; its thickness is a function of its age: as time passes, it conductively cools and becomes thicker. Because it is formed at mid-ocean ridges and spreads outwards, its thickness is therefore a function of its distance from the mid-ocean ridge where it was formed. For a typical distance oceanic lithosphere must travel before being subducted, the thickness varies from about 6 km thick at mid-ocean ridges to greater than 100 km at subduction zones; for shorter or longer distances, the subduction zone (and therefore also the mean) thickness becomes smaller or larger, respectively. Continental lithosphere is typically ~200 km thick, though this also varies considerably between basins, mountain ranges, and stable cratonic interiors of continents. The two types of crust also differ in thickness, with continental crust being considerably thicker than oceanic (35 km vs. 6 km).
The location where two plates meet is called a plate boundary, and plate boundaries are commonly associated with geological events such as earthquakes and the creation of topographic features such as mountains, volcanoes, mid-ocean ridges, and oceanic trenches. The majority of the world's active volcanoes occur along plate boundaries, with the Pacific Plate's Ring of Fire being most active and most widely known. These boundaries are discussed in further detail below. Some volcanoes occur in the interiors of plates, and these have been variously attributed to internal plate deformation and to mantle plumes.
Basically, three types of plate boundaries exist, with a fourth, mixed type, characterized by the way the plates move relative to each other. They are associated with different types of surface phenomena. The different types of plate boundaries are:
* Transform boundaries (Conservative) occur where plates slide or, perhaps more accurately, grind past each other along transform faults. The relative motion of the two plates is either sinistral (left side toward the observer) or dextral (right side toward the observer). The San Andreas Fault in California is an example of a transform boundary exhibiting dextral motion.
* Divergent boundaries (Constructive) occur where two plates slide apart from each other. Mid-ocean ridges (e.g., Mid-Atlantic Ridge) and active zones of rifting (such as Africa's Great Rift Valley) are both examples of divergent boundaries.
* Convergent boundaries (Destructive) (or active margins) occur where two plates slide towards each other commonly forming either a subduction zone (if one plate moves underneath the other) or a continental collision (if the two plates contain continental crust). Deep marine trenches are typically associated with subduction zones, and the basins that develop along the active boundary are often called "foreland basins". The subducting slab contains many hydrous minerals, which release their water on heating; this water then causes the mantle to melt, producing volcanism. Examples of this are the Andes mountain range in South America and the Japanese island arc.
* Plate boundary zones occur where the effects of the interactions are unclear and the boundaries, usually occurring along a broad belt, are not well defined, and may show various types of movements in different episodes.
Plate tectonics is basically a kinematic phenomenon: Earth scientists agree upon the observation and deduction that the plates have moved one with respect to the other, and debate and find agreements on how and when. But still a major question remains on what the motor behind this movement is; the geodynamic mechanism, and here science diverges in different theories.
How mantle convection relates directly and indirectly to the motion of the plates is a matter of ongoing study and discussion in geodynamics. Somehow, this energy must be transferred to the lithosphere in order for tectonic plates to move. There are essentially two types of forces that are thought to influence plate motion: friction and gravity.
* Basal drag (friction): The plate motion is in this way driven by friction between the convection currents in the asthenosphere and the more rigid overlying floating lithosphere.
* Slab suction (gravity): Local convection currents exert a downward frictional pull on plates in subduction zones at ocean trenches. Slab suction may occur in a geodynamic setting wherein basal tractions continue to act on the plate as it dives into the mantle (although perhaps to a greater extent acting on both the under and upper side of the slab).
Lately, the convection theory is much debated as modern techniques based on 3D seismic tomography of imaging the internal structure of the Earth's mantle still fail to recognise these predicted large scale convection cells. Therefore, alternative views have been proposed:
In the theory of plume tectonics developed during the 1990s, a modified concept of mantle convection currents is used, related to super plumes rising from the deeper mantle which would be the drivers or the substitutes of the major convection cells. These ideas, which find their roots in the early 1930s with the so-called "fixistic" ideas of the European and Russian Earth Science Schools, find resonance in the modern theories which envisage hot spots/mantle plumes in the mantle which remain fixed and are overridden by oceanic and continental lithosphere plates during time, and leave their traces in the geological record (though these phenomena are not invoked as real driving mechanisms, but rather as a modulator). The modern theories that continue building on the older mantle doming concepts and see the movements of the plates a secondary phenomena, are beyond the scope of this page and are discussed elsewhere for example on the plume tectonics page.
Another suggestion is that the mantle flows neither in cells nor large plumes, but rather as a series of channels just below the Earth's crust which then provide basal friction to the lithosphere. This theory is called "surge tectonics" and became quite popular in geophysics and geodynamics during the 1980s and 1990s.
Gravitational sliding away from mantle doming: According to older theories one of the driving mechanisms of the plates is the existence of large scale asthenosphere/mantle domes, which cause the gravitational sliding of lithosphere plates away from them. This gravitational sliding represents a secondary phenomenon of this, basically vertically oriented mechanism. This can act on various scales, from the small scale of one island arc up to the larger scale of an entire ocean basin.
The actual vector of a plate's motion must necessarily be a function of all the forces acting upon the plate. However, therein remains the problem regarding what degree each process contributes to the motion of each tectonic plate.
The diversity of geodynamic settings and properties of each plate must clearly result in differences in the degree to which such processes are actively driving the plates. One method of dealing with this problem is to consider the relative rate at which each plate is moving and to consider the available evidence of each driving force upon the plate as far as possible.
Plate tectonics is the main current theory in Earth Sciences regarding the development of our planet Earth. It is, therefore, appropriate to dedicate some space to explain how the Earth Science community, step by step, has built this theory, from early speculations, through the gathering of proof and severe debates, up to the refinement and quantification, and still ongoing confrontations with alternative ideas.
In the late 19th and early 20th centuries, geologists assumed that the Earth's major features were fixed, and that most geologic features such as basin development and mountain ranges could be explained by vertical crustal movement, described in what is called the geosynclinal theory. Generally, this was placed in the context of a contracting planet Earth due to heat loss in the course of a relatively short geological time.
It was observed as early as 1596 that the opposite coasts of the Atlantic Ocean—or, more precisely, the edges of the continental shelves—have similar shapes and seem to have once fitted together.
Since that time many theories were proposed to explain this apparent complementarity, but the assumption of a solid Earth made these various proposals difficult to accept.
As it was observed early that although granite existed on continents, seafloor seemed to be composed of denser basalt, the prevailing concept during the first half of the twentieth century was that there were two types of crust, named "sial" (continental type crust), and "sima" (oceanic type crust). Furthermore, it was supposed that a static shells of strata was present under the continents. It therefore looked apparent that a layer of basalt (sial) underlies the continental rocks.
As more and more of the seafloor was mapped during the 1950s, the magnetic variations turned out not to be random or isolated occurrences, but instead revealed recognizable patterns. When these magnetic patterns were mapped over a wide region, the ocean floor showed a zebra-like pattern: one stripe with normal polarity and the adjoining stripe with reversed polarity. The overall pattern, defined by these alternating bands of normally and reversely polarized rock, became known as magnetic striping, and was published by Ron G. Mason and co-workers in 1961, who didn't find, though, an explanation for these data in terms of sea floor spreading, like Vine, Matthews and Morley a few years later.
After all these considerations, Plate Tectonics (or, as it was initially called "New Global Tectonics") became quickly accepted in the scientific world, and numerous papers followed that defined the concepts:
* In 1965, Tuzo Wilson who had been a promotor of the sea floor spreading hypothesis and continental drift from the very beginning added the concept of transform faults to the model, completing the classes of fault types necessary to make the mobility of the plates on the globe work out.
* A symposium on continental drift was held at the Royal Society of London in 1965 which must be regarded as the official start of the acceptance of plate tectonics by the scientific community, and which abstracts are issued as Blacket, Bullard & Runcorn (1965). In this symposium, Edward Bullard and co-workers showed with a computer calculation how the continents along both sides of the Atlantic would best fit to close the ocean, which became known as the famous "Bullard's Fit".
* In 1966 Wilson published the paper that referred to previous plate tectonic reconstructions, introducing the concept of what is now known as the "Wilson Cycle".
* In 1967, at the American Geophysical Union's meeting, W. Jason Morgan proposed that the Earth's surface consists of 12 rigid plates that move relative to each other.
* Two months later, Xavier Le Pichon published a complete model based on 6 major plates with their relative motions, which marked the final acceptance by the scientific community of plate tectonics.
* In the same year, McKenzie and Parker independently presented a model similar to Morgan's using translations and rotations on a sphere to define the plate motions.
The appearance of plate tectonics on terrestrial planets is related to planetary mass, with more massive planets than Earth expected to exhibit plate tectonics. Earth may be a borderline case, owing its tectonic activity to abundant water (Silica and water form a deep eutectic.)
Venus shows no evidence of active plate tectonics. There is debatable evidence of active tectonics in the planet's distant past; however, events taking place since then (such as the plausible and generally accepted hypothesis that the Venusian lithosphere has thickened greatly over the course of several hundred million years) has made constraining the course of its geologic record difficult. However, the numerous well-preserved impact craters have been utilized as a dating method to approximately date the Venusian surface (since there are thus far no known samples of Venusian rock to be dated by more reliable methods). Dates derived are dominantly in the range c. 500 to 750 Ma, although ages of up to c. 1.2 Ga have been calculated. This research has led to the fairly well accepted hypothesis that Venus has undergone an essentially complete volcanic resurfacing at least once in its distant past, with the last event taking place approximately within the range of estimated surface ages. While the mechanism of such an impressive thermal event remains a debated issue in Venusian geosciences, some scientists are advocates of processes involving plate motion to some extent.
In the 1990s, it was proposed that Martian Crustal Dichotomy was created by plate tectonic processes. Scientists today disagree, and believe that it was created either by upwelling within the Martian mantle that thickened the crust of the Southern Highlands and formed Tharsis or by a giant impact that excavated the Northern Lowlands.
0 comments:
Post a Comment